Correction: Yao, P. et al. Rebuilding Long Time Series Global Soil Moisture Products Using the Neural Network Adopted the Microwave Vegetation Index. Remote Sens. 2017, 9, 35

نویسندگان

  • Panpan Yao
  • Jiancheng Shi
  • Tianjie Zhao
  • Hui Lu
  • Amen Al-Yaari
چکیده

Panpan Yao 1,2 ID , Jiancheng Shi 2,3,*, Tianjie Zhao 2,3, Hui Lu 3,4 and Amen Al-Yaari 5 1 Graduate School of University of Chinese Academy of Sciences, Beijing 100049, China; [email protected] 2 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; [email protected] 3 The Joint Center for Global Change Studies, Beijing 100875, China; [email protected] 4 Ministry of Education Key Laboratory for Earth System Modeling, and Department of Earth System Science, Tsinghua University, Beijing 100084, China 5 INRA, UMR1391 ISPA, 33140 Villenave d’Ornon, France; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6483-8048

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advantages of Using Microwave Satellite Soil Moisture over Gridded Precipitation Products and Land Surface Model Output in Assessing Regional Vegetation Water Availability and Growth Dynamics for a Lateral Inflow Receiving Landscape

To improve the understanding of water–vegetation relationships, direct comparative studies assessing the utility of satellite remotely sensed soil moisture, gridded precipitation products, and land surface model output are needed. A case study was investigated for a water-limited, lateral inflow receiving area in northeastern Australia during December 2008 to May 2009. In January 2009, monthly ...

متن کامل

Effect of Land Cover Heterogeneity on Soil Moisture Retrieval Using Active Microwave Remote Sensing Data

This study addresses the issue of the variability and heterogeneity problems that are expected from a sensor with a larger footprint having homogenous and heterogeneous sub-pixels. Improved understanding of spatial variability of soil surface characteristics such as land cover and vegetation in larger footprint are critical in remote sensing based soil moisture retrieval. This study analyzes th...

متن کامل

Effects of corn on c- and l-band radar backscatter: a correction method for soil moisture retrieval

Past research has demonstrated the potential of mapping soil moisture using both low frequency passive and active microwave measurements (e.g. Jackson et al., 1999; Wagner & Scipal, 2000). This resulted in formulating satellite missions carrying L-band microwave sensors capable of monitoring soil moisture globally. For example, a microwave radiometer has recently been launched by European Space...

متن کامل

Non-parametric Methods for Soil Moisture Retrieval from Satellite Remote Sensing Data

Satellite remote sensing observations have the potential for efficient and reliable mapping of spatial soil moisture distributions. However, soil moisture retrievals from microwave remote sensing techniques are typically complex due to inherent difficulty in characterizing the interactions among land surface parameters that contribute to the retrieval process. Therefore, adequate physical mathe...

متن کامل

Global-Scale Evaluation of Roughness Effects on C-Band AMSR-E Observations

Quantifying roughness effects on ground surface emissivity is an important step in obtaining high-quality soil moisture products from large-scale passive microwave sensors. In this study, we used a semi-empirical method to evaluate roughness effects (parameterized here by the parameter) on a global scale from AMSR-E (Advanced Microwave Scanning Radiometer for EOS) observations. AMSR-E brightnes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017